
ECS 289A Sublinear Algorithms for Big Data Lee

Homework 1
Due: 23 January, 2026

Each problem is graded on the coarse scale of 󰃀+, 󰃀, 󰃀− and no 󰃀. It is also assigned a multiplier,
denoting the relative importance of the problem. Both correctness and presentation are grading
criteria.

Please read and make sure you understand the collaboration policy on the course missive. Extra
credit problems are clearly marked below (see course missive for the details of grade calculations).

Remember to prove all your (non-elementary and not shown in class) mathematical claims, unless
stated otherwise.

Each group of students should submit only 1 pdf to the corresponding Canvas assignment.

Problem 1

(3 󰃀s)

The first motivating example discussed in class was testing whether a list of length n is all 0s, in
the usual testing sense without any 󰂃 gap. In class, we claimed that any algorithm requires Ω(n)
queries to succeed (with probability at least 2

3 , say). For this problem, show that a deterministic
algorithm requires exactly n queries. That is, any deterministic algorithm that makes only n − 1
queries must fail on some input list.

(Hint: What kind of list is hardest to distinguish from the all 0s list? Now suppose there is a tester
algorithm A that makes at most n− 1 queries, can you construct a list that A cannot distinguish
from the all 0s list?)

Problem 2

We now try to generalise the Ω(n) lower bound from the previous problem to randomised algorithms,
succeeding with probability ≥ 2

3 . More formally, we aim to show that no randomised algorithm
which always queries fewer than 2n

3 locations in the list can succeed with probability at least 2
3

with a 1-sided error, always succeeding for the all 0s list. (For a 2-sided error algorithm, the lower
bound is still Ω(n) but it’s slightly more annoying to show.)

(a) (2 󰃀) Show that, if there exists an algorithm that succeeds with probability 2
3 after (always)

making at most k (distinct) queries, then there exists an(other) algorithm that makes k
uniformly and randomly drawn (distinct, without replacement) queries which also succeeds
with 2

3 probability.

(b) (2 󰃀s, Extra credit) Using the previous part, show the desired lower bound on the ran-
domised query complexity on the all 0s problem with 1-sided error.
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Problem 3

Suppose p and q are two discrete distributions on the set [n] (= {1..n}). The total variation
distance dTV(p,q), or (

1
2 times) the ℓ1 distance between p and q is defined as

1

2
||p− q||1 =

1

2

󰁛

i∈[n]
|pi − qi|

(a) (1 󰃀) Show that dTV(p,q) can be equivalently defined as

sup
A⊆[n]

p(A)− q(A) = sup
A⊆[n]

󰁛

i∈A
pi − qi

(b) (2 󰃀s) Consider the following experiment: an adversary picks (adversarially, not randomly)
either the distribution p or the distribution q, and sends over one sample from the chosen
distribution. Show that no (deterministic) algorithm or test can, on input this single sample,
tell whether the sample came from p or q with probability better than 1

2 +
1
2dTV(p,q). More

formally, the claim is that no algorithm can be such that: 1) if the chosen distribution is p,
then the algorithm answers p with probability > 1

2 + 1
2dTV(p,q), and 2) similarly for q.

(c) (1 󰃀, Extra credit, but slightly annoying or very annoying depending on how you prove it)
Show the above impossibility result even for randomized algorithms/tests, namely, algorithms
that, after seeing a sample, might flip a (sample-dependent biased) coin and answers p or q
according to the coin flip.

(d) (1 󰃀) Consider the above experiment again. Suppose that you, as the algorithm designer,
have access to the complete descriptions of p and q. Construct an algorithm or test that
successfully distinguishes between a single sample from p versus q, such that:

• P(Answer = p |p)− P(Answer = p |q) ≥ dTV(p,q)

• P(Answer = q |q)− P(Answer = q |p) ≥ dTV(p,q)

The results of this problem can be generalised to continuous distributions.

Problem 4

(3 󰃀s)

Consider a sequence of k many independent Binomial random variables Xi ← Bin(n, 13). Use
Chernoff bounds to prove a high-probability upper bound on the maximum of these k variables,
assuming that k ≪ n. Concretely, find “?” such that

P
󰀓
max{Xi} >

n

3
+O(?)

󰀔
≤ 1

k

The “?” you find should depend sublinearly in n (so don’t give some trivial upper bound like 2n/3)
and polylogarithmically in k. You should also write out the multiplicative constant in the big-O
explicitly, and make sure that it is reasonably small (and not 10000).
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Problem 5

(3 󰃀s, Extra credit)

Let X ← Poi(λ) be a Poisson random variable for some mean λ. Prove the following tail bounds

for X, where the function h(u)
·
= 2 (1+u) ln(1+u)−u

u2 : For any x > 0

P(X > λ+ x) ≤ e−
x2

2λ
h( x

λ
)

and for any x ∈ (0,λ),

P(X < λ− x) ≤ e−
x2

2λ
h(− x

λ
)

You may use without proof that the moment generating function of X is MX(t) = eλ(e
t−1).
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